
 
 

 

 
ANALYSIS AND CONTEMPLATION OF REVERSE ENGINEERING 

TECHNIQUES  
 

ROMIL GANDHI AND MADHURI GEDAM 
Shree L. R. Tiwari College of Engineering, Department of Computer Engineering, Mumbai, India 

romil.gandhi@gmail.com; madhuri.gedam@gmail.com 
 

SACHIN BOJEWAR 
Vidyalankar Institute of Technology, Department of Information Technology, Mumbai, India 

sachin.bojewar@vit.edu.in 
 

ABSTRACT: This paper discusses different uses of reverse engineering (RE), as well as the 
change in its original use for beneficial purposes to negative ones. A comparative study of 
different techniques used for RE is performed, and proposals to improve security are made. These 
include the obfuscation technique used for Java, and protection from RE using the proposed 
hardware system. 
 
KEYWORDS: Reverse engineering, obfuscation, security, authentication. 
 
INTRODUCTION  
 
Reverse engineering (RE) is the process of obtaining development knowledge from the final form 
of an application or software. RE can also define as [4]: the art of problem dissecting and a critical 
part of problem solving process. RE requires command on the relevant programming language, 
and it was developed for various useful reasons, for example, if the relevant application or 
software no longer belongs to a given company, RE can be used to extract the code from the final 
product (executable) [2]. Another example is the case where the developer who initially created a 
particular application is no longer associated with the application, and consequently, the 
application cannot be revised, improved, or “debugged.” In such a case, RE is used to recover the 
application logic and its functionality [5]. 
 
To recreate or redevelop a product from its final model is called reversing, e.g., to develop a car by 
analyzing the original model. This concept was slightly altered by “crackers,” such that RE now 
refers to redeveloping a slightly modified product from its final model. 
 
Currently, crackers use RE to redevelop licensed applications or software at significant cost to the 
original creator. As they gain more experience, crackers can crack applications/software more 
quickly. Reversers normally sell such RE software or make it available for free on the Internet. 
The greater the security implemented to thwart illegal RE, the greater the effort invested by 
crackers to evade these security measures.  
 
Section II contains a discussion of various tools typically used for RE. In this study, software 
security and its consequences are discussed; certain software available on the Internet is for study 
purposes only. The methods to reverse engineer this software include using such tools and 
procedures as providing a patch for the executable (.exe) file, finding the serial key that allows full 
use of the software, and providing necessary files, such as dynamic link libraries (DLLs). Section 



203 
 

III describes some Java obfuscation types and determines the one that can be easily implemented 
in any software application. Section IV describes the piracy rates in major countries, and Section V 
proposes a method to enhance security against illegal RE. 
 
INTRODUCTION TO REVERSE ENGINEERING TOOLS 
 
The tools required for RE depend on the application in question. Some basic tools include 
Ollydbg, PEID, Reflector, and Deobfuscator. Ollydbg is a debugger widely available on the 
Internet. PEID is a small software program that analyzes the programming language used by a 
specific application, as well as the compression or packing used, if any. Reflector is used to 
reverse .Net code written in Visual Studio, and Deobfuscator is used to reverse obfuscation 
implemented in Java. However, Deobfuscator does not always work properly, it is quite difficult 
for a reverser to understand, and requires considerable experience. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flowchart explaining the functionality of an experimented application 
 
Three applications with different levels of security are discussed in this paper. The first example is 
quite simple and requires finding the serial key by disassembling the executable file. Fig. 1 shows 
the Flowchart discussed for RE. For the application, Ollydbg is used as the debugger because it 
helps to open packed/unpacked executable files in the assembly language, thus helping to reverse 

Enter name, serial and click on 
confirm button 

      If 
credential 
matches ? 

Enter message displayed 

Success message 
displayed 

Start 

Start 



204 
 

Address         Opcode               Mnemonics     
…… 
660E9596     FF7424 08           PUSH DWORD PTR SS:[ESP+8] 
660E959A     FF7424 08          PUSH DWORD PTR SS:[ESP+8] 
660E959E     6A 00                  PUSH 0 
660E95A0     E8 44E6FFFF     CALL MSVBVM60.__vbaStrComp 
660E95A5     C2 0800              RETN 8 
------------------------------------------------------------------ 
Stack SS:[0013F2B4]=0022FAF4, (UNICODE "373037303730364336313635") 

engineer the application and determine the logic required to identify the serial key. Fig. 2 shows 
the code executed when the “Confirm” button on the application is clicked in the disassembler. 
This is an iterative process that helps to debug the application when using the debugger. When the 
Confirm button is clicked, the application is managed through the debugger, which executes the 
application’s code line by line (similar to the interpreter), and in this way, the reverser can 
determine the application’s logic. 
 
Note that Fig. 2 shows Unicode, which means that Ollydbg converts the code to hexadecimal, and 
then it determines whether the user has entered the correct key. Through repeated analysis, it is 
determined that, if a username is longer than six characters, all characters after the sixth character 
are discarded. 
 
For example, consider the username “apple.” The program proceeds as follows: 
First, the first and last characters in the username (“a” and “e”) are concatenated. 
Step 1: ae 
Next, the same process is repeated for the remaining characters (“ppl”), and the new first and last 
characters are prefixed to the previous string. 
Step 2: plae 
The process is repeated until there are no characters left in the original string, and result is 
obtained. 
Step 3: pplae  
 
However, if the result in Step 3 has an odd number of characters, the first character in the final 
result (“p”) is prefixed to the string in order to ensure the string has an even number of characters. 
 
Step 4: ppplae 
 
After Step 4, the result is converted to hexadecimal notation (HEX). 
Step 5: 7070706C6165 
This HEX code is the “key,” and the username is compared with the key. 

 
Figure 2. PlanetHaX application, partial assembly code 

 
Thus, it was fairly easy to debug the first application, and the key required by the program was 
found. Note that only Ollydbg was used. However, there is another method to reverse engineer 

String 
Comparison 

Stack at this 
address (SS) 



205 
 

applications, though it does not qualify as actual reversing. According to this method, bad code 
can be jumped by changing the operation code so that the application always moves to the good 
code and never receives an error message. In other words, security is bypassed through JMP 
instruction (i.e., unconditional jump) to move to the desired message, and receive no error 
messages. 
 
For the second application examined in this paper, the case where a user wants the full version of 
the software when only the demo version is available is considered. When the demo version is 
downloaded, it provides a 30-day trial. If the “Enter Key” option is selected, the demo version asks 
for “Full Name” and “Registration Key.” 
 
Once the program opens in the debugger and is analyzed, the key for the professional version of 
the software (Fig. 3) and the keys for several other products are discovered. 
 
There is software on the Internet not adequately secure, and hence, the companies that develop 
such software suffer large losses because of the illegal proliferation of the software based on RE 
techniques. The key factors are time and money, which do not guarantee security following 
implementation. 
 
The third application presented for examination is an instance of the reversing of a .jar file (Fig. 4). 
Jd-gui generates the original code as originally written. The example used here is intended to show 
the functioning of jd-gui, which is the Java debugger. 
 
The login application asks for the username and password, which are unknown to the cracker. The 
cracker simply needs to open the application in jd-gui, which provides the code. As can be seen in 
Fig. 4, the entire class file is generated and the username and password become available. In this 
manner, a normal Java program with low security is easy to reverse. Using similar techniques, .Net 
applications can be reversed engineered using the .Net Reflector, which provides the .net code that 
helps to find the application’s logic, similar to jd-gui. 
 
006AE35E   MOV EDX,SuperEZW.006AF974                                                 ASCII "GWP-TYBKU-6UY80-UIFK7-
ER56J" 

006AE363   CALL SuperEZW.00404DF0 

006AE368   LEA EAX,DWORD PTR DS:[EBX+8] 
006AE36B   MOV EDX,SuperEZW.006AF974                                                  ASCII "GWP-TYBKU-6UY80-UIFK7-
ER56J" 

006AE370   CALL SuperEZW.00404DF0 

006AE375   LEA EAX,DWORD PTR DS:[EBX+C] 
006AE378   MOV EDX,SuperEZW.006AF974                                                   ASCII "GWP-TYBKU-6UY80-UIFK7-
ER56J" 

006AE37D   CALL SuperEZW.00404DF0 

006AE382   LEA EAX,DWORD PTR DS:[EBX+10] 

006AE385   MOV EDX,SuperEZW.006AF998                                                    ASCII "SOFTWARE\\WaveEditorPro\\" 

006AE38A   CALL SuperEZW.00404DF0 

006AE38F   LEA EAX,DWORD PTR DS:[EBX+14] 

006AE392   MOV EDX,SuperEZW.006AF8D0                                                   ASCII "http://www.wav-editor.com/" 



206 
 

006AE397   CALL SuperEZW.00404DF0 

006AE39C   LEA EAX,DWORD PTR DS:[EBX+18] 
006AE39F   MOV EDX,SuperEZW.006AF8F4                                                   ASCII "http://www.wav-
editor.com/support.html" 

006AE3A4   CALL SuperEZW.00404DF0 

006AE3A9   LEA EAX,DWORD PTR DS:[EBX+1C] 

006AE3AC   MOV EDX,SuperEZW.006AF8D0                                                  ASCII "http://www.wav-editor.com/" 

006AE3B1   CALL SuperEZW.00404DF0 

006AE3B6   LEA EAX,DWORD PTR DS:[EBX+20] 

006AE3B9   MOV EDX,SuperEZW.006AF8D0                                                    ASCII "http://www.wav-editor.com/" 

006AE3BE   CALL SuperEZW.00404DF0 

006AE3C3   LEA EAX,DWORD PTR DS:[EBX+24] 
006AE3C6   MOV EDX,SuperEZW.006AF924                                                     ASCII "http://www.wav-
editor.com/order.html" 

006AE3CB   CALL SuperEZW.00404DF0 

006AE3D0   LEA EAX,DWORD PTR DS:[EBX+28] 
006AE3D3   MOV EDX,SuperEZW.006AF924                                                      ASCII "http://www.wav-
editor.com/order.html" 

006AE3D8   CALL SuperEZW.00404DF0 

…….. 

006AE406   JNZ SuperEZW.006AE51D 

006AE40C   XOR EDX,EDX                                                                                     SuperEZW.<ModuleEntryPoint> 

006AE40E    MOV EAX,DWORD PTR DS:[ESI+4EC] 

006AE414     MOV ECX,DWORD PTR DS:[EAX] 

006AE416     CALL DWORD PTR DS:[ECX+44] 
 

Figure 3. SuperEZ Wave Editor code when opened in Ollydbg 
 

 
  
 

 
 
 
 
 

 
Figure 4. JDialog demo retrieved code in jd-gui 

 
DIFFERENTIATING OBFUSCATION TYPES IN JAVA 
 
This section discusses Java obfuscation types [3], given that Java is considered the preferred 
language among programmers for its platform-independent features, functionality, and easy-to-use 

package com.login; 
public class Login 
{ 
  public static boolean authenticate(String username, String password) 
  { 
    if ((username.equals("VenDeTt@")) && password.equals("$2BoR0toBe#"))) 
{       return true; 
    } 
    return false;  }} 



207 
 

concept. Java has two types of obfuscation techniques [3]: i) source code obfuscation, and ii) byte 
code obfuscation. Source code obfuscation is not as secure as byte code obfuscation. The source 
code technique changes the identifiers, which makes the code more difficult to read and reverse. 
However, it does not change the functionality of the code or its execution. Nonetheless, 
experienced reversers can extract the partial original code, following which it becomes easy to 
guess and recover the entire code for the application in question. A popular tool for this is the 
DeDe deobfuscator. Because the availability of several online tools to deobfuscate code is the 
main security concern in Java, developers have to consider security while developing applications 
on the platform. 
 
Byte code obfuscation replaces the classes, packages, field names, methods, etc., with characters 
that are difficult to read (special characters, and sometimes, symbols). Byte code obfuscation can 
also be reversed, but this is much more difficult than reversing source code obfuscation. A byte 
code obfuscator that is freely available on the Internet is yGUARD. 
 
If, following the application of obfuscation, the relevant Java code is not as secure as required, it 
could be because any reverser can extract (unencrypted) code from the Java Virtual Machine 
(JVM), which is the compiler that executes all Java code. 
 
PIRACY 
 
This section shows the extent of piracy in various countries. The data is obtained from Business 
Software Alliance (BSA) reports [1]. 
 
As Fig. 5 shows, piracy was practiced the most in Pakistan in 2010, followed by Thailand, India, 
Malaysia and others. Results from a similar report by the BSA in 2011 are also shown (Fig. 6). It 
is apparent that the piracy percentage for almost all countries decreased in 2011, but the maximum 
reduction was only 3%. The piracy rates remain high, and enhanced security is needed to prevent 
it. 
 
HARDWARE PROTECTION SCHEME 
 
There are several methods to improve security; however, none of these methods is infallible. For 
example, developers can use obfuscators, or change the physical address or starting address of an 
application. A few companies attempt to protect code from debuggers by implementing anti-
debuggers; however, as mentioned above, these do not work. 
 
The system proposed in this paper is intended to enhance security. The hardware used is a dongle 
with read-only memory (ROM) that contains the actual code and logic of the application in 
question. The system is divided in two parts, hardware and software. The software part contains 
the code, and it only consists of function invocations. One function calls another function in order 
to execute code. The proposed system consists of anti-debugging code with the ability to find 
malicious code, such as keyloggers. This makes the system more difficult to reverse engineer. 
The hardware part consists of the actual code and logic of the application. All information is 
obfuscated, and almost everything is secured. 
 
The software initiates if the dongle is connected to the system. The invoking function calls the 
functions  written  in  the  dongle  and  executes  the  code.  The  procedure  seems  simple, but it is  



208 
 

 
Figure 5. BSA report (2010) 

 
Figure 6. BSA report (2011) 

 
difficult for reversers to overcome: without hardware, they cannot reverse the logic. Thus, at least 
initially, users who want to use the application need to buy the software. If a reverser attempts to 
intrude into the code in the dongle, the code is obfuscated, and hence, the reverser requires more 
effort. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ja
pa

n

U
K U
S

In
di

a

Fr
an

ce

Sp
ai

n

M
al

ay
si

a

Pa
ki

st
an

Th
ai

la
nd

H
on

gk
on

g

G
er

m
an

y

Ru
ss

ia

Ke
ny

a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ja
pa

n U
S

Fr
an

ce

M
al

ay
si

a

Th
ai

la
nd

G
er

m
an

y

Ke
ny

a



209 
 

 
Thus, security is improved by adding more logic and functions. The dongle can be provided with a 
machine ID so that no new machine can use the same hardware. These are only possible security 
enhancements that companies can implement to avoid losses caused by illegal RE. 
 
The demo version of the downloaded software should provide no core operations, it should be 
developed separately from the full version, and it should not contain the logic of the application. In 
this manner, even if the software is reversed, none of the functions can be activated and used. 
 
CONCLUSION 
 
Most reversers need easy methods to reverse engineer systems and avoid laborious techniques. 
The proposed hardware and obfuscation will render applications more robust against RE. Instances 
of reversing carried out using the applications: PlanetHaX KeyGen, SuperEZ Wave Editor and 
JDialog Demo, prove that most applications available online are easy to crack and hence require 
better security. We hope that our proposed system will improve security and authentication of the 
application will have new way of implementation. 
 
REFERENCES 
 
Al-Hakimy, A.M., Rajadurai, K.P., and Ravi, M.I., “Formulating a defensive technique to prevent 

the threat of prohibited reverse engineering,” Current Trends in Information Technology 
(CTIT), 2011 International Conference and Workshop, Dubai, pp. 82–85. 

Von Mayrhauser, A. and Vans, A.M., “From code understanding needs to reverse engineering tool 
capabilities,” Computer-Aided Software Engineering, 1993. CASE '93. Proceeding of the Sixth 
International Workshop, pp. 230–239. 

S. Shah, P. Nixon, R.I. Ferguson, S.R. ul Hassnain, N. Arbab and Khan. L. “Securing Java-Based 
Mobile Agents through Byte Code Obfuscation Techniques”, Multitopic Conference, 2006. 
INMIC '06. IEEE, pp. 305–308. 

I. Klimek, M. Keltika, F. Jakab, “Reverse engineering as an education tool in computer science”, 
Emerging eLearning Technologies and Applications (ICETA), 2011 9th International 
Conference, pp. 123–126. 

K. Gallagher, C. Kaner, J. Deignan, “The Law and Reverse Engineering”, 19th Working 
Conference on Reverse Engineering (WCRE), IEEE, 2012. pp. 3–4. 

 
 

 
 


